Nonlinear Control of a Shape Memory Alloy Actuated Manipulator

نویسندگان

  • Mohammad H. Elahinia
  • Hashem Ashrafiuon
چکیده

This paper presents a nonlinear, robust control algorithm for accurate positioning of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA). A model for an SMA actuated manipulator is presented. The model includes nonlinear dynamics of the manipulator, a constitutive model of Shape Memory Alloy, and electrical and heat transfer behavior of SMA wire. This model is used for open and closed loop motion simulations of the manipulator. Experiments are presented that show results similar to both closed and open loop simulation results. Due to modeling uncertainty and nonlinear behavior of the system, classic control methods such as Proportional-IntegralDerivative control are not able to present fast and accurate performance. Hence a nonlinear, robust control algorithm is presented based on Variable Structure Control. This algorithm is a control gain switching technique based on the weighted average of position and velocity feedbacks. This method has been designed through simulation and tested experimentally. Results show fast, accurate, and robust performance of the control system. Computer simulation and experimental results for different stabilization and tracking situations are also presented. @DOI: 10.1115/1.1501285#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sliding Mode Control of a Shape Memory Alloy Actuated Manipulator

This paper presents a two-part controller that uses a state variable estimator for control of a single degree of freedom rotary manipulator actuated by Shape Memory Alloy (SMA) wire. A model for the SMA actuated manipulator is presented. The model includes nonlinear dynamics of the manipulator, a constitutive model of the Shape Memory Alloy, and the electrical and heat transfer behavior of SMA ...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Developing an Adaptive Controller for a Shape Memory Alloy Walking Assistive Device

The Shape Memory Alloy is a lightweight, compact and biocompatible actuation mechanism which is considered here to replace the current actuation technologies in assistive locomotion devices. This paper is aimed toward the development of an adaptive robust controller to deal with control problems in the actuation of shape memory alloys (SMA). In this research the ankle joint is considered to be ...

متن کامل

On the Desing and Test of a Prototype of Biped Actuated by Shape Memory Alloys

In this paper the design of a biped robot actuated with Shape Memory Alloy (SMA) springs with minimum degrees of freedom is presented. SMA springs are a class of smart materials that are known for their high power to mass and volume ratios. It was shown that utilizing spring type of SMAs have many advantages as large deformation, smooth motion, silent and clean movement compared to ordinary typ...

متن کامل

Nonlinear Stress-based Control of a Rotary SMA-actuated Manipulator

In this paper a nonlinear stress-based controller is designed to position a singledegree-of-freedom shape memory alloy (SMA) actuated manipulator. A three-part model was constructed based on the dynamics/kinematics of the arm, the thermomechanical behavior of SMAs, and an assumed heat transfer model consisting of electrical heating and natural convection. Both sliding mode control and inverse d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002